A Product Formula for Spherical Representations of a Group of Automorphisms of a Homogeneous Tree, I
نویسندگان
چکیده
Let G = Aut(T ) be the group of automorphisms of a homogeneous tree T , and let Γ be a lattice subgroup of G. Let π be the tensor product of two spherical irreducible unitary representations of G. We give an explicit decomposition of the restriction of π to Γ. We also describe the spherical component of π explicitly, and this decomposition is interpreted as a multiplication formula for associated orthogonal polynomials.
منابع مشابه
A Product Formula for Spherical Representations of a Group of Automorphisms of a Homogeneous Tree, Ii
Let G = Aut(T ) be the group of automorphisms of a homogeneous tree T and let π be the tensor product of two spherical irreducible unitary representations of G. We complete the explicit decomposition of π commenced in part I of this paper, by describing the discrete series representations of G which appear as subrepresentations of π.
متن کاملTwo-wavelet constants for square integrable representations of G/H
In this paper we introduce two-wavelet constants for square integrable representations of homogeneous spaces. We establish the orthogonality relations fo...
متن کاملThe Representations and Positive Type Functions of Some Homogenous Spaces
‎For a homogeneous spaces ‎$‎G/H‎$‎, we show that the convolution on $L^1(G/H)$ is the same as convolution on $L^1(K)$, where $G$ is semidirect product of a closed subgroup $H$ and a normal subgroup $K $ of ‎$‎G‎$‎. ‎Also we prove that there exists a one to one correspondence between nondegenerat $ast$-representations of $L^1(G/H)$ and representations of ...
متن کاملRepresentations of Double Coset Lie Hypergroups
We study the double cosets of a Lie group by a compact Lie subgroup. We show that a Weil formula holds for double coset Lie hypergroups and show that certain representations of the Lie group lift to representations of the double coset Lie hypergroup. We characterize smooth (analytic) vectors of these lifted representations.
متن کاملNonrigid Group Theory of Water Clusters ( Cyclic Forms): (H2O)i for 2<=i<=6
The character table of the fully nonrigid water cluster (cyclic forms), (H_{2}O){_i}, with C{_ih} symmetry derived for the first time, for 2<=i <=6. The group of all feasible permutations is the wreath product of groups S{_i}[S{_2}] which consists of i!2i operations for i = 2, ..., 6 divided into ( w.r.t) 5, 10, 20, 36, 65 conjugacy classes and 5, 10, 20, 36, 65 irreducible representations resp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000